

Guidelines for Secure Application

Design, Development,

Implementation & Operations

Issued by:

Indian Computer Emergency Response Team (CERT-In)

Ministry of Electronics and Information Technology

Government of India

Page | 1

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

Table of Contents

1. Introduction and Purpose .. 2

2. Applicability and Scope ... 3

3. PHASE – I: Establish the Context of the Security in Designing of

Application ... 4

4. PHASE – II: Implement & Ensure Secure Development Practices 5

5. PHASE – III: Guidelines for Audit of Applications 11

6. PHASE – IV: Ensure Secure Application Deployment and

Operations .. 13

Page | 2

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

1. Introduction and Purpose

One of the key reason for vulnerabilities in the applications are lack of secure design,

development, implementation, and operations. Relying solely on post-development audits

for security is inadequate. Instead, security must be an inherent and integral aspect,

seamlessly integrated into the application's design and development lifecycle.

Organization should incorporate secured application development practices and

application owners should ask for adherence to the best practices highlighted in this

document and should not only rely on the post audit. By adhering to these guidelines,

applications can be developed with built-in security measures making it difficult target for

security breaches and exploitation.

The guidelines have been divided into four phases, as depicted in Figure 1 below.

After the adoption of secure application design and development guidelines, the

application can undergo both source-code review and black-box testing by CERT-In

empaneled auditing organization to identify any lapses / vulnerabilities in implementation

of the security practices in the application. Key findings and recommendations in the

guidelines are mined from the field data analysis of audits conducted by CERT-In

empaneled auditing organizations.

Figure 1: Phases of the guideline document

PHASE I : Establish the context of
the security in designing of

application

PHASE II: Implement & ensure
secure development practices

PHASE III: Guidelines for Audit of
Applications

PHASE IV: Ensure secure
application deployment and

operations

Page | 3

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

2. Applicability and Scope

This guideline has been issued by Indian Computer Emergency Response Team (CERT-

In) for the entities engaged in developing or outsourcing application development

(especially for government sector entities). The prime objective of this guideline is to

establish a firm and robust application security baseline in application development

lifecycle. The concept of application security pertains to the comprehensive approach for

safeguarding all dimensions of an application. This includes its design, development,

deployment, and maintenance phases. Hence, the purposeful inclusion of application

security is driven by the intention to offer guidance to the target audience, aiming to

foster the development of secure applications. This approach is crucial for ensuring the

application's security right from the initial phase and progressively strengthening every

phases of application development lifecycle.

The secure application development practices outlined in this document have

been crafted to enable organizations to customize them according to their specific

requirements and seamlessly integrate them into their application lifecycle right from the

outset of an application development project. The establishment of context of the security

in design process is addressed which underscores all security considerations,

encompassing not only secure application design but also secure architectural design, by

considering the environment to which the application will be integrated, and outlining

strategies to ensure its comprehensive security. Furthermore, this document expounds

upon how secure application deployment, operational maintenance, and response

protocols can be structured to ensure the continued security of the application. Moreover,

it offers insights into making security patches and updates more accessible for the

organization, facilitating the seamless integration of frequent security practices over time.

This document also emphasizes that applications lacking secure design and

development practices are not suitable for assessments and audits. Auditee

organizations and auditor organizations must confirm that application is designed &

developed with secure practice prior to commencing any assessment.

Page | 4

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

3. PHASE – I: Establish the Context of the Security in

Designing of Application

3.1 Security by Design Approach: It refers to an approach of incorporating security

measures and considerations into the design and architecture of a system or

application from early stages of the development process. It emphasizes the

proactive integration of security controls, mechanisms, and safeguards at the

foundational level of the system, rather than as an afterthought or add-on. The

goal of security by design is to create systems that are inherently secure, resilient,

and resistant to security threats, vulnerabilities, and attacks.

3.2 Adoption of Secure Software Development Life Cycle (SDLC): Secure SDLC

is a methodological approach that integrates security practices throughout the

software development life cycle. It enables organization to incorporate security as

a key component of the development process ensuring compliance with global

standards, build software with robust security measures, reducing the likelihood of

security breaches, protecting sensitive data, and delivering secure & reliable

software. Secure Software Development Life Cycle (SDLC) encompasses various

models and frameworks:

a) "Microsoft Secure Development Lifecycle (SDL)" is a widely known and

adopted SDLC framework with seven phases.

b) "Open Web Application Security Project (OWASP) Software Assurance

Maturity Model (SAMM)" helps build mature software security programs with

four levels and multiple security practices.

c) "Agile Secure Development Lifecycle" integrates security practices within agile

methodologies, including security grooming, security testing, continuous

integration & deployment, security feedback loop.

d) "NIST Secure Software Development Framework (SSDF)" is a comprehensive

guide for developing secure software.

3.3 Engagement of security trained designers and developers in the application

development: Designers and developers involved in application development

Page | 5

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

must possess a comprehensive understanding of the cyber security fundamentals

and should possess practical knowledge of the security principles governing

secure application development. This involves identifying the underlying reasons

for weaknesses & vulnerabilities in the application.

4. PHASE – II: Implement & Ensure Secure Development

Practices

4.1 Authentication, Authorization & Session Management: The implementation of

data protection and privacy measures requires the application of diverse

methodologies to ensure responsible and secure information management. It is

imperative to incorporate coordinated actions that integrate secure authentication,

session management, and access control, all in harmony with the fundamental

principles of safeguarding data privacy and protection. Secure authentication and

authorization mechanisms must be seamlessly integrated to strengthen against

unauthorized access and to uphold the integrity of both systems and application

applications. Authentication involves the meticulous validation of user or system

identities, while authorization governs the judicious allowance or denial of

resource access based on user identity. Simultaneously, vigilant session

management is essential to prevent session-related vulnerabilities and

unauthorized access. This involves systematically generating, administering, and

terminating user sessions while implementing concurrent security protocols.

Furthermore, access control achieved through the delineation and enforcement of

regulatory rules and policies, stands as the cornerstone to ensure that exclusive

privileges for specific assets or information within an application are only extended

to authorized users.

4.2 Cryptographic Practices: It refers to set of procedures, techniques, and methods

used to secure the sensitive information from unauthorized access & data

breaches through various mathematical and computational techniques.

Cryptographic practices should ensure data is encrypted to make it secure and

unreadable (encryption), creates distinct signatures to confirm the validity and

Page | 6

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

integrity of data (digital signatures) and produce data representations with defined

sizes (hashing). The outdated cryptographic techniques and custom

implementation should be avoided.

4.3 Version Control and Change management: These are set of practices &

procedures that are used to manage and control modifications in application

configurations and source code. In version control, a system that monitors and

controls changes to files or source code in order to facilitate collaboration,

maintain a change history, and allow revert / rollback to previous versions for

testing and compliance checks. Change management, on the other hand, is the

process of planning, analysing, approving, and implementing changes to

application or systems. It ensures that changes have been carefully assessed,

tested, well-documented, and implemented in a controlled manner.

4.4 Ensure Secure Coding: Proper input validation using regex techniques and built-

in security controls provided by programming frameworks in order to validate and

sanitize all user inputs should be implemented to prevent common vulnerabilities

like SQL injection, cross-site scripting (XSS) and command injection. Ensure that

special characters or sequences in the application code are converted into an

alternative, yet equivalent format that poses no threat when processed by the

intended interpreter. This is done to prevent injection attacks and unexpected

behavior, using encoding methods like URL encoding. In addition to encoding,

escaping techniques involving adding extra characters or sequences before a

special character or sequence to ensure correct interpretation and maintain the

intended behavior of the code.

4.5 File & Memory Management: To develop a secure and robust application, it is

imperative to prioritize meticulous file and memory management within your

coding practices. File management involves handling files and file-related

operations in a secure manner to prevent vulnerabilities, while memory

management refer to proper allocation and deallocation of memory in a program to

prevent vulnerabilities like buffer overflows and memory leaks.

Page | 7

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

4.6 Optimise to Manage Complexity: It involves implementing techniques to

streamline complex systems, processes, or structures. The complex aspects of

development phase are Concurrency, Dependency Management & Coupling. The

coupling and dependencies should be minimized by including modular

architectures, dependency injections, design patterns, building loosely coupled

system. Concurrency may be achieved by dividing the application into multiple

independent units of execution, namely processes and threads, and then

executing them in parallel.

4.7 Develop Software Technology Specific Security Checklist: Organisation

should develop a software technology / language specific secure coding checklist

containing defined set of rules and guidelines dealing specifically with the

peculiarities, defects and non-standard extensions in respective programming

language / technology. This checklist may be used as a measure to evaluate the

security of software or application. The conditions for defining the set of rules in

the checklist should include:

a) Checking the violation of coding practices w.r.t. security flaws that may result in

exploitable vulnerability.

b) Identification of the exceptional conditions that may require deviating from

secure coding practices to ensure the proper functioning of the application.

c) Verification of conformance to the secure coding practice.

4.8 Security Test Driven Development (STDD): The applications should be

developed using STDD approach which incorporates security testing throughout

the software development lifecycle (SDLC). It involves writing security tests before

writing the actual code to ensure that security vulnerabilities are identified early

and addressed before the code is deployed to production. The source code must

undergo a static scan or Static Application Security Testing (SAST) before

deployment to the production environment, followed by a dynamic scan or

Dynamic Application Security Testing (DAST) to identify vulnerabilities in a live

application. Thereafter, detected security gaps in code should be refactored in

accordance with the security recommendations without impacting the code's

functionality.

Page | 8

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

4.9 Implementation of Threat Modelling in Application Development: Threat

modelling should be implemented in the application development process by first

identifying the boundaries of the application, including its components, data flows,

and interfaces. Thereafter, data flow diagram should be created to visualize the

possible access points that attackers may exploit, along with the associated

threats. Subsequently, countermeasures should be developed and tested to

mitigate these threats. It is important to conduct threat modelling periodically to

ensure the ongoing security of the application.

4.10 Build Secure Environment for Application Development: The application

should be developed & build in secure environment. The environment should be

separated and protected to prevent unauthorized access. Logging, monitoring,

and auditing of trust relationships used for authorization and access are crucial

among components within each environment. Enforce multi-factor authentication

and conditional access across all environments to mitigate security risks. Encrypt

sensitive data like Personal Identifiable Information (PII) and credentials.

Implement defensive cybersecurity practices, including continuous monitoring and

timely response to cyber incidents. Maintain a consistent practice of continuous

monitoring and validation, requiring users to undergo re-validation at specified

intervals before granting access. In the case of multi-factor authentication, users

must navigate through multiple layers of authentication, extending beyond simple

password-OTP verification. Implement stringent device control measures to

monitor both users and their devices. This involves tracking device connections,

resource utilization, and verifying device authorization status.

4.11 Secure Use of Environment Variables: To enhance the security of controlled file

access and provide an additional layer of protection, it is recommended to utilize

environment variables instead of plain text files. Furthermore, it is important to

treat input from environment variables as untrusted and validate it accordingly.

Storing sensitive information in environment variables should be avoided to

minimize the risk of unauthorized access or exposure of sensitive data.

4.12 Stored Procedures Over SQL Statements: Stored procedures should be used

instead of constructing SQL statements to reduce the chances of injection attacks.

Page | 9

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

As stored procedures restrict direct user access to the database table and provide

an additional layer of security. Additionally, stored procedures should be integrated

with security measures such as encryption, access control policies, and network

security measures. It is important to address issues like version control and

potential database vendor lock-in, as they can pose obstacles to secure

implementation.

4.13 Handle Error Messages, Commented Code and Exceptions: Prior to deploying

an application into a production environment, it is crucial to remove all commented

code. Additionally, it is important to ensure that sensitive information, such as

system details, network configurations, passwords, server names, IP addresses,

or file system paths, is not exposed through error messages or URL contents.

Proper exception handling should be implemented as a mandatory process, which

involves identifying potential exceptions, using try-catch blocks, handling the

exceptions appropriately, providing feedback to users when errors occur, logging

the errors, and thoroughly testing the exception handling mechanism. It is

recommended to keep necessary access and error logs of the application.

4.14 Linear Data Structure and Multiple Inheritances: Allocate space for linear data

structures like arrays, linked lists, stacks, and vectors based on their required size.

Implement proper access control using 'public,' 'private,' or 'protected' access

modifiers in the code to specify the location or physical address of these data

structures. Avoid multiple inheritances to mitigate potential code vulnerabilities, as

declaring essential variables in the public scope can compromise the abstraction

principle in object-oriented programming.

4.15 Third Party and Open-Source Libraries, Components and APIs: Security

wrapper classes should be created for the open-source and third-party libraries

used in the code. It is important to validate a library's ability to throw exceptions,

including handling "out of memory" exceptions. Additionally, data entry and exit

points of the application should be carefully examined and exceptional handling

mechanisms should be implemented to ensure proper security measures.

An organization should integrate third-party components, open-source

components and APIs into their development projects only after conducting a

Page | 10

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

thorough evaluation of their credibility and security posture. Implementing rate

limits is crucial to prevent excessive API usage, thereby safeguarding the stability

of both the organization's system and the third-party service. It is important to

ensure secure API key management by employing robust cryptographic algorithms

for key generation, regularly rotating API keys, and setting expiration dates for

keys to minimize the risk of potential breaches. Additionally, organizations should

maintain a Software Bill of Material (SBOM) for their applications, and avoid using

vulnerable components & libraries.

4.16 Build Trust Boundaries: A trust boundary should be established between the

front-end entry, exit points and the back-end of the application. This means that

data received from client-side validations should be treated as untrusted and

undergo validation on the back-end.

4.17 Principle of Least Privileges: It is essential to employ the principle of least

privilege, ensuring that only the minimum necessary privileges are assigned.

Additionally, privileges should be granted when required and promptly revoked

once their intended purpose has been fulfilled. This principle should be

encapsulated within a set of rules, tailored for distinct users and devices, thus

ensuring consistent enforcement across all users and devices.

4.18 Enhancing Maturity of Software Security: Software security can be improved by

integrating models such as CMMI (Capability Maturity Model Integration), which

offers organizations a framework to evaluate, define, and improve their software

development processes. Models such as CMMI can assess the development

process and highlight areas for improvement. CMMI comprises various levels,

from Level 1 characterized by ad hoc and unstable processes to Level 5 with well-

organized, documented, and continuously improving processes. Code reviews

typically come into play when an organization reaches levels 2 and 3.

Page | 11

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

5. PHASE – III: Guidelines for Audit of Applications

5.1 Source Code Review: It is a process that examines an application's source code

to identify security flaws or vulnerabilities. It ensures adherence to coding

standards, uncovers bugs, and identifies potential threats, such as SQL injection

and cross-site scripting. Source code reviews can help detect errors and

vulnerabilities that may have been overlooked during the development phase.

Source code reviews encompass both manual and automated reviews. Manual

reviews can evaluate the logic and design of the code, identifying issues that

automated tools may overlook. Automated tools can scan large codebases for

common vulnerabilities and coding errors. To enhance the quality of source code

review in terms of security, it is imperative to integrate both static and dynamic

scan i.e. Static Application Security Testing (SAST) and Dynamic Application

Security Testing (DAST). SAST provides early detection by analysing static code,

addressing potential coding errors, while DAST evaluates the running application,

simulating real-world attacks and identifying runtime vulnerabilities. The

combination of SAST and DAST offers a comprehensive approach, fortifying the

source code review process throughout the software development lifecycle and in

real-world scenarios, thereby enhancing the overall security of the application.

5.2 Conduct Security Vulnerability Assessment: Organisation should engage

CERT-In empanelled auditing organisation to conduct the security audit of the

developed application and its related components. The objective of the audit

should be discovery of all known vulnerabilities based on the comprehensive

standards/framework such as Cyber Security Audit Baseline Requirements,

OWASP Application Security Verification Standard (ASVS), OWASP Web Security

Testing Guide, Mobile Application Security Verification Standard (MASVS), Mobile

Application Security Testing Guide (MASTG), OWASP Application Programming

Page | 12

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

Interface (API) security checklist along with applicable regulatory framework,

directions, guidelines & whitepapers issued by agencies. Critical vulnerabilities

highlighted in audit reports should be patched by organisation immediately. After

remediation actions, follow-up audits should be performed by auditing organisation

to verify closure of vulnerabilities & nonconformities highlighted in the previous

audit. Vulnerability assessments should be conducted periodically at-least once in

a year or when there is any change in the application.

5.3 Timeline for Completion of Audit: Audit report should mention appropriate

timelines for closure of vulnerabilities according to severity.

5.4 Penetration Testing: It involves simulation of real-world cyberattacks on a

computer system, network, or application to provide valuable insights into potential

security threats that could be exploited. Penetration Testing enables organizations

to prioritize and fix vulnerabilities before they are exploited by malicious actors. It

is advisable to conduct penetration testing iteratively with each release or

modification of the source code to continually identify and address potential

security threats in the application.

5.5 Logging and Audit Trails: Logging and audit trail functionality should be

integrated in the application for troubleshooting and compliance requirement.

Logging helps in error detection, troubleshooting, and performance optimization by

maintaining a detailed record of application activities, enabling swift identification

and resolution of issues. On the other hand, audit trails enhance security,

compliance, and accountability by documenting every user action and system

event within the application.

5.6 Precondition for Assessment and Audit: Application developed without any

secure design and development practices should not be considered for

assessment and audits. Auditee organizations and auditor organizations must

confirm that application is designed & developed with secure practice prior to

commencing any assessment.

Page | 13

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

6. PHASE – IV: Ensure Secure Application Deployment and
Operations

6.1 Secure Deployment and Configuration: There should not be any changes in

audited application code or configurations and application should be hosted in

secure & tested environment. Ensure continuous logging and monitoring of logs.

Utilize secure configuration management tools like Ansible, Puppet, etc., to

establish secure deployment configurations. Implement secure communication

protocols and access controls for the deployment environment, including firewalls,

VPNs, and IP restrictions. When employing automated deployment tools such as

Docker, Kubernetes, and Jenkins, verify and apply appropriate security measures.

Regularly update software and dependencies to maintain a secure deployment

environment.

6.2 Provision for Patch and Update: The comprehensive documentation detailing

the security features integrated into the architecture, codebase, APIs, and data

interactions of the application should be prepared. Also, ensure that all features

are meticulously designed with backward compatibility in mind, and steer clear of

making incompatible changes to existing APIs and data structures. In case

vulnerabilities are discovered in the application, there should be a structured

process to apply patches or fixes. This involves testing patches to ensure they

don't introduce new issues / vulnerabilities, maintaining a change control process

for documentation and accountability, and communicating changes to relevant

stakeholders.

6.3 Secure Development of Update, Patch & Release to Mitigate Against Supply

Chain Risk from Developers: Secure development of updates, patches, and

Page | 14

Guidelines for Secure Application Design,

Development, Implementation &

Operations (Updated January, 2024)

www.cert-in.org.in

Version 1.1

releases is essential to protect against supply chain risks originating from

developers. This includes thorough testing, digital signing of code with digital

certificates, and employing secure update distribution mechanisms to prevent

tampering or unauthorized modifications. By prioritizing security at every stage of

application development, organizations can mitigate the potential risks associated

with supply chain vulnerabilities and ensure the integrity and safety of their

software updates. Prioritize developer account security on code sharing platforms

through access controls and monitoring. Implement and maintain secure build and

deployment pipelines with robust enforcement of security checks.
